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Carcinogen derived biomarkers: applications in studies of
human exposure to secondhand tobacco smoke
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Objective: To review the literature on carcinogen derived biomarkers of exposure to secondhand tobacco
smoke (SHS). These biomarkers are specifically related to known carcinogens in tobacco smoke and
include urinary metabolites, DNA adducts, and blood protein adducts.
Method: Published reviews and the current literature were searched for relevant articles.
Results: The most consistently elevated biomarker in people exposed to SHS was 4-(methylnitrosamino)-1-
(3-pyridyl)-1-butanol (NNAL) and its glucuronides (NNAL-Gluc), urinary metabolites of the tobacco
specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). The tobacco specificity of
this biomarker as well as its clear relation to an established lung carcinogen are particularly appropriate
for its application in studies of SHS exposure.
Conclusion: The results of the available carcinogen derived biomarker studies provide biochemical data
which support the conclusion, based on epidemiologic investigations, that SHS causes lung cancer in non-
smokers.

T
he International Agency for Research on Cancer (IARC)
will soon publish a report on secondhand tobacco smoke
(SHS).1 It concludes that SHS causes lung cancer in

humans. This conclusion agrees with the evaluations of other
groups which have previously examined this issue.2–6 It is
based on over 50 epidemiologic studies of involuntary
smoking and lung cancer risk in never smokers. These
studies are bolstered by biochemical data demonstrating
carcinogen uptake in non-smokers exposed to SHS. These
biomarker studies are the subject of this review.

SHS, also known as environmental tobacco smoke, is
produced mainly by the release of smoke from the burning
tip of a cigarette between puffs (sidestream smoke, or SS)
and the smoke exhaled by the smoker (exhaled mainstream
smoke). Small additional contributions come from the tip of
the cigarette and through the cigarette paper during a puff,
and through the paper and mouth end of the cigarette
between puffs.7 Similar considerations apply to other forms
of tobacco smoking such as cigars and pipes.

Figure 1 presents a framework for considering mechanisms
of lung cancer induction by SHS. An analogous scheme has
been proposed as an outline of lung cancer induction in
smokers.8 Carcinogens are responsible for the cancer causing
effects of tobacco smoke. It is very likely that the broad
mechanisms of cancer induction by SHS and mainstream
cigarette smoke are similar because the same carcinogens are
present in both, although in different relative concentrations.
The major difference is that the carcinogen dose from SHS
exposure is significantly less than that from smoking.

CARCINOGENS IN SS AND SHS
Constituents of cigarette mainstream smoke and SS have
been discussed in a number of publications.7 9 10 Table 1
summarises representative levels of carcinogens in SS and
SHS.10 Structures of the organic compounds are shown in
fig 2. Table 1 includes only compounds that have been
evaluated by IARC and for which there is sufficient evidence
of carcinogenicity in either laboratory animals or humans.
Many of these compounds have also been evaluated by the
US National Toxicology Program.3 It also includes only
compounds for which there are published data on levels in

SS or SHS. The amounts of each constituent are taken from
representative publications. A number of other tobacco
smoke carcinogens which have been evaluated by IARC are
not included in table 1 because there are no published data
on their levels in SS or SHS. It is likely, however, that these
compounds are also present. In addition, there may be
carcinogens present that have not been fully characterised or
evaluated by IARC.

Polycyclic aromatic hydrocarbons (PAH) are a diverse
group of carcinogens formed in the incomplete combustion of
organic material. These carcinogens are found in tobacco
smoke, broiled foods, and polluted environments of various
types. Workers in iron and steel foundries and aluminium
production plants are exposed to PAH. These exposures are
thought to be the cause of excess cancers in these settings.11 12

Benzo[a]pyrene (BaP) is the best known member of this class
of compounds. PAH are potent locally acting carcinogens in
laboratory animals. They induce tumours of the upper
respiratory tract and lung when administered by inhalation,
instillation in the trachea, or implantation in the lung.13 14

When administered orally, BaP does not generally cause lung
tumours in mice and rats, but rather causes tumours of the
digestive tract.15–18

N-Nitrosamines are a large group of carcinogens which
induce cancer in a wide variety of species and tissues. There is
no reason to assume that humans should be resistant to the
effects of these carcinogens.19 They are present at low con-
centrations in foods and can be formed endogenously from
amines and nitrogen oxides.20 Tobacco smoke contains volatile
N-nitrosamines such as N-nitrosodimethylamine and N-
nitrosopyrrolidine as well as tobacco-specific N-nitrosamines

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Abbreviations: 8-OH-dG, 8-hydroxydeoxyguanosine; BaP,
benzo[a]pyrene; GC-MS, gas chromatography-mass spectrometry;
HPB, 4-hydroxy-1-(3-pyridyl)-1-butanone; IARC, International Agency
for Research on Cancer; NNAL, 4-(methylnitrosamino)-1-(3-pyridyl)-1-
butanol; NNK, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone; NNN,
N’-nitrosonornicotine; PAH, polycyclic aromatic hydrocarbons; SHS,
secondhand smoke; SS, sidestream smoke; ttMA, trans,trans-muconic
acid
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such as N’-nitrosonornicotine and 4-(methylnitrosamino)-1-
(3-pyridyl)-1-butanone (NNK).21 Tobacco specific N-nitros-
amines are chemically related to nicotine and other tobacco
alkaloids and are therefore found only in tobacco products or
related materials.22 Many N-nitrosamines are powerful

carcinogens in laboratory animals. They display striking
organospecificity, affecting particular tissues, often indepen-
dent of the route of administration.19 For example, N’-
nitrosonornicotine causes tumours of the oesophagus and
nasal cavity in rats, while the principal target of NNK in

Figure 1 Scheme showing the steps which would link secondhand smoke (SHS) exposure and cancer via tobacco smoke carcinogens.

Figure 2 Structures of the organic
carcinogens in sidestream smoke and
secondhand tobacco smoke (see
table 1).
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rodents is the lung. NNK is the only tobacco smoke
carcinogen that induces lung tumours systemically in all
three commonly used rodent models—rat, mouse, and
hamster.23

Aromatic amines were first identified as carcinogens as a
result of industrial exposures that occurred in the dye
industry. Among these, 2-naphthylamine and 4-aminobiphe-
nyl are well established human bladder carcinogens.24 25

Aromatic amines cause tumours at a variety of sites in
laboratory animals. Some members of this class such as
2-toluidine are only weakly carcinogenic.26

Formaldehyde and acetaldehyde induce respiratory tract
tumours in rodents when administered by inhalation.27 28

They are weaker carcinogens than PAH, N-nitrosamines, and
aromatic amines, but their levels in SS and SHS are
thousands of times higher. Butadiene and benzene are
volatile hydrocarbons which also occur in considerable
quantities in SS and SHS. Butadiene is a multi-organ
carcinogen, with particular potency in mice, while benzene
causes leukemia in humans.29–31 Metals such as nickel and
cadmium are human carcinogens which are also present in
SS.32 33

There are also reports that SS contains free radicals in
about the same concentration as mainstream smoke.34 The
gas phase is reported to have reactive yet long lived radicals
while the particulate phase apparently has a free radical
system which is an equilibrium mixture of semiquinones,
hydroquinones, and quinones.35 It is not known whether
such agents can induce tumours in laboratory animals.

CARCINOGEN DERIVED BIOMARKERS:
APPLICATIONS IN SHS STUDIES
Figure 1 shows that carcinogens undergo metabolism which
may lead either to detoxification and excretion or to
activation to a more reactive form that can bind to DNA.
Most carcinogens in SHS require metabolism for binding to
DNA, although some will react directly. Covalent binding to
DNA results in production of ‘‘DNA adducts’’ in which the
carcinogen metabolite is chemically bound to one of the DNA
bases or to phosphate. This binding is critical to the
carcinogenic process. There are cellular repair mechanisms
which can remove these adducts and return the DNA to its
normal form, but these are not always efficient. If the
adducts persist during DNA replication, miscoding can occur
leading to permanent mutations. Apoptosis, or programmed
cell death, removes some mutated cells. If the mutations
occur in critical genes such as oncogenes and tumour
suppressor genes, loss of normal cellular growth control
processes can result and, ultimately, cancer occurs. The
constant barrage of DNA damaging carcinogens experienced
upon exposure to SHS is completely consistent with the
multiple genetic changes known to occur in lung cancer and
other cancers. These genetic changes are known to be
associated with six proposed ‘‘hallmarks of cancer’’: self
sufficiency in growth signals; evasion of apoptosis; insensi-
tivity to anti-growth signals; sustained angiogenesis; tissue
invasion and metastasis; and limitless replicative potential.36

Carcinogen derived biomarkers, which are analytes directly
related to specific carcinogens, are produced during the

Table 1 Carcinogens in sidestream smoke (SS) and secondhand smoke (SHS) of
cigarettes*

Representative amounts

Carcinogens SS (per cigarette) SHS (per m3) References

Polycyclic aromatic hydrocarbons (PAH)
benz[a]anthracene 201 ng 0.32–1.7 ng 84, 85
Benzo[b]fluoranthene

196 ng
84, 85

Benzo[j]fluoranthene 0.79–2.0 ng 84, 85
Benzo[k]fluoranthene 84, 85
Benzo[a]pyrene 45–103 ng 0.37–1.7 ng 84–86
Indeno[1,2,3-cd]pyrene 51 ng 0.35–1.1 ng 84, 85
Dibenz[a,h]anthracene 1 ng 87
N-nitrosamines
N-nitrosodimethylamine 143–1040 ng 4–240 ng 88–90
N-nitrosoethylmethylamine 3–35 ng 88, 90
N-nitrosodiethylamine 8.2–73 ng 20–200 ng 88, 90
N-nitrosopiperidine 4.8–19.8 ng 86
N-nitrosopyrrolidine 7–700 ng 3.5–27.0 ng 88–91
N-nitrosodiethanolamine 43 ng 92
N’-nitrosonornicotine (NNN) 110–857 ng 0.7–23 ng 86, 89, 93, 94
4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanone (NNK)

201–1440 ng 0.2–29.3 ng 86, 89, 93, 94

Aromatic amines
2-toluidine 3030 ng 95
2-naphthylamine 63.1–128 ng 96
4-aminobiphenyl 11.4–18.8 ng 96
Aldehydes
Formaldehyde 233–485 mg 143 mg 96, 97
Acetaldehyde 961–1820 mg 268 mg 96, 97
Miscellaneous organics
Catechol 98–292 mg 1.24 mg 96–98
1,3-butadiene 98–205 mg 0.3–40 mg 96, 97, 99, 100
Isoprene 668–1260 mg 657 mg 96, 97
Benzene 163–353 mg 4.2–63.7 mg 68, 96, 97, 99, 100
Acrylonitrile 42–109 mg 96
Inorganic compounds
Hydrazine 94 ng 101
Nickel 51 ng 96
Chromium 57–79 ng 96
Cadmium 330–689 ng 4–38 ng 96, 102
Lead 28.9–46.6 ng 96
Polonium-210 0.091–0.139 pCi 103

*Adapted from Hoffmann et al.10
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events outlined in fig 1. These biomarkers have the potential
to provide information on cancer risk.37 Three main types of
carcinogen derived biomarkers have been measured in
humans exposed to SHS: carcinogens and their metabolites
in urine; DNA adducts in white blood cells and sputum; and
adducts to haemoglobin or albumin in blood. Carcinogens
and their metabolites in urine provide information about
carcinogen dose. DNA adduct measurements give an indica-
tion of dose to DNA, the critical target in carcinogenesis.
Haemoglobin and albumin adducts are not directly involved
in the carcinogenic process, but they are often used as
surrogates for DNA adducts, because they are more readily
measured and in many cases their levels correlate with those
of DNA adducts. This review will discuss carcinogen derived
biomarkers as applied to studies of SHS exposure. Studies on
cotinine, a major metabolite of the non-carcinogen nicotine
widely used in investigations of SHS exposure, will not be
discussed here except as they relate to carcinogen derived
biomarkers.38

Table 2 summarises data on human uptake of specific
carcinogens from SHS, as determined by measurement of
carcinogen derived biomarkers. These studies provide a link
between SHS exposure and uptake of actual carcinogens to
which people are exposed. This topic has been reviewed
previously.39

Several methods have been used to estimate PAH uptake in
humans exposed to SHS. 1-Hydroxypyrene and hydroxyphen-
anthrenes are urinary metabolites of pyrene and phen-
anthrene, respectively. These metabolites are widely used as
biomarkers of PAH uptake although the parent compounds,
pyrene and phenanthrene, are non-carcinogenic. Levels of
1-hydroxypyrene and hydroxyphenanthrenes in urine are not
increased by exposure to SHS.40–44 Other factors such as
smoking, occupational exposures, and diet are significant
contributors to the levels of these compounds in urine.

Metabolites of BaP and other PAH form adducts with
haemoglobin and serum albumin. These adducts have been
measured by a variety of methods, including immunoassay
and gas chromatography-mass spectrometry (GC-MS). Using
a relatively non-specific immunoassay technique, one group
has found increased levels of PAH-albumin adducts in SHS
exposed children,45 46 but an increment in levels of this
marker with SHS exposure was not found in two other
studies.47 48 An effect of SHS exposure on albumin and
haemoglobin adducts of BaP was not found in a recent study
which used GC-MS as the detection method.40 Thus, the
evidence that SHS exposure significantly increases human
uptake of PAH is inconsistent.

Since tobacco specific N-nitrosamines are found only in
tobacco products or related nicotine containing materials,
their adducts or metabolites should be specific biomarkers of
tobacco exposure. Haemoglobin adducts of NNK and NNN
can be hydrolyzed to release 4-hydroxy-1-(3-pyridyl)-1-
butanone (HPB), which is quantified by GC-MS. In smokers,
levels of HPB releasing haemoglobin adducts of NNK and
NNN are low compared to haemoglobin adducts of several
other carcinogens, possibly because of the high reactivity of
the alkylating intermediate.49 50 Considering the relatively low
levels of these adducts in smokers, one would not expect to
find significantly elevated amounts in non-smokers exposed
to SHS, as reported by Branner et al.51 Metabolites of NNK are
readily measured in the urine of people exposed to SHS. The
metabolites 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol
(NNAL) and its glucuronide conjugates NNAL-Gluc- are
quantified by GC with nitrosamine-selective detection (GC-
TEA).52–56 All studies reported to date show significantly
higher amounts of NNAL plus NNAL-Gluc, or NNAL-Gluc, in
the urine of SHS exposed humans than in unexposed
controls (table 2). In one study, uptake of NNK was over
six times higher in women who lived with smokers compared
to women who lived with non-smokers.55 In another
investigation, widespread uptake of NNK was demonstrated
in a group of economically disadvantaged schoolchildren, and
the range of levels varied over 90-fold.53 Most studies to date
demonstrate a correlation between levels of cotinine and
NNAL plus NNAL-Gluc in urine (fig 3). Cotinine is a reliable
biomarker for nicotine uptake by non-smokers exposed to
SHS, and has been widely used in studies of SHS exposure.38

NNAL plus NNAL-Gluc is a biomarker for uptake of the
tobacco specific lung carcinogen NNK by non-smokers
exposed to SHS. The NNAL plus NNAL-Gluc biomarker is
more directly related to cancer risk than cotinine because
NNK but not nicotine is carcinogenic. The uptake of NNK, a
potent lung carcinogen, by non-smokers exposed to SHS
provides a biochemical link between SHS exposure and lung
cancer.

Aromatic amines such as 4-aminobiphenyl form adducts
with haemoglobin that can be quantified by GC-MS. Mixed
results have been obtained in studies of the effects of SHS on
4-aminobiphenyl haemoglobin adduct levels. Hammond et al
demonstrated that adduct levels were elevated in pregnant

Figure 3 Correlation between levels of cotinine plus cotinine-
glucuronide and NNAL plus NNAL-Gluc in the urine of 74 school aged
children exposed to SHS (r = 0.69, p , 0.0001).53

Table 3 Relation of carcinogen derived biomarkers to SHS exposure*

Carcinogen in SHS Biomarker Association with SHS exposure References

PAH 1-Hydroxypyrene in urine None in most studies 40–43, 45–48
Hydroxyphenanthrenes in urine
PAH-albumin adducts
PAH-haemoglobin adducts

NNK NNAL and NNAL-Gluc in urine Consistently increased 52–56
Aromatic amines Haemoglobin adducts Mixed results 46, 51, 57–60
Benzene trans, trans-Muconic acid in urine Mixed results 63–68

*Modified from Scherer and Richter.39
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women exposed to SHS.57 Maclure et al observed slightly
higher levels of haemoglobin adducts of 4-aminobiphenyl
and 3-aminobiphenyl in persons with confirmed SHS
exposure compared with unexposed persons.58 4-Amino-
biphenyl haemoglobin adducts were also elevated in children
exposed to SHS.46 However, two other studies, including
one of pregnant women, showed no consistent relation
between adduct levels and SHS exposure.51 59 A study in
German children also showed no significant increase in
aromatic amine haemoglobin adduct levels with increasing
SHS exposure; in fact there was a significant decrease in
ortho- and meta-toluidine adducts.60 There is a background
level of aromatic amine haemoglobin adducts in apparently
unexposed humans. The origin of this background is
unknown, but it could be due in part to uptake of the
corresponding nitro compounds from sources such as diesel
emissions. Levels of aromatic amines in urine were unaf-
fected by exposure to SHS.61

trans,trans-Muconic acid (tt-MA) is a urinary metabolite of
benzene which has been widely used to estimate benzene
uptake.62 Mixed results have been obtained in studies on the
relation of this metabolite to SHS exposure, with some
studies showing somewhat higher levels in people exposed to
SHS while others found no effect.63–68 Interpretation of these
findings is complicated by differing excretion rates among
individuals and contributions of sources other than benzene,
such as sorbate in food, to its levels in urine.39 63 67 Benzene
itself has been quantified in exhaled breath. Breath measure-
ments of non-smokers who reported exposure to smokers at
work showed elevated benzene levels, but levels in non-
smokers living in homes with smokers were not increased.69

In a second study, increased levels of exhaled benzene were
detected in non-smokers living in homes with smokers
compared to non-smokers living with non-smokers.68 There
was no difference in exhaled benzene among children living
in homes with smokers or non-smokers.66 Collectively, the
biomarker data discussed here indicate that benzene uptake
in humans is not consistently associated with SHS exposure.

Haemoglobin adducts of ethylene oxide can be quantified
by GC-MS of terminal N-hydroxyethylvaline. There was no
difference in levels of these adducts between non-smokers
who did not live or work with a smoker compared to those
who did.70

Several other less specific markers have been explored in
studies of SHS exposure. 8-Hydroxydeoxyguanosine (8-OH-
dG) is a widely used biomarker of oxidative damage to DNA.
In two studies, no increase in 8-OH-dG levels in placenta and
leucocytes of individuals exposed to SHS was observed.71 72

However, in a study of occupational exposure in Reno,
Nevada, the average 8-OH-dG level in whole blood DNA of
SHS exposed workers was 63% higher than that in non-
exposed individuals, a significant difference.73 Levels of
nitrated proteins in blood plasma of non-smokers exposed
to SHS were significantly lower than in unexposed non-
smokers, and there was no effect of SHS on levels of oxidised
proteins.74 Urinary 3-ethyladenine is a biomarker of ethylat-
ing agents. In one study, concentrations of 3-ethyladenine in
urine were not increased by exposure to SHS.75 32P-
Postlabelling is a technique which can estimate levels of
hydrophobic DNA adducts. Four investigations did not find
effects of SHS exposure on levels of 32P-postlabelled
DNA.41 72 76 77 However, a study conducted in Greece did find
a relation between SHS exposure and 32P-postlabelled DNA
adducts in lymphocytes in a subgroup of the subjects
examined.78 A recent study demonstrated no significant
increase in levels of 32P-postlabelled adducts in induced spu-
tum of individuals exposed to SHS in a pub compared to pre-
exposure levels. However, one of the DNA adducts found in the
SHS exposed individuals may have been derived from BaP.79

Urinary thioethers are conjugates of carbonyl-containing
mutagens. Thioethers were not significantly increased as a
result of SHS exposure.41 80 3-Hydroxypropyl mercapturic
acid, possibly from acrolein exposure, was identified as a
possible SHS related product in urine.41 Conflicting results
have been obtained in studies of urinary mutagenicity as
affected by SHS exposure (reviewed in41 and 39). In general,
there seem to be small and sometimes significant effects of
SHS exposure on urinary mutagenicity when diet is
controlled.80 81 In a study of 1249 Italian women, there was
an inverse dose–response relation between intensity of
current husband’s smoke and concentrations of plasma b
carotene and L-ascorbic acid. There was a significant inverse
association between urinary cotinine and plasma b
carotene.82

SUMMARY
An overview of the carcinogen derived biomarkers most
widely applied in studies of SHS exposure is presented in
table 3. Analyses of biomarkers of PAH uptake and metabolic
activation have produced mainly mixed results, probably
because there are significant exposures to these carcinogens
through the diet and general environment. Similarly, mixed
results have been reported in studies of benzene and aromatic
amine uptake in people exposed to SHS. In contrast to these
mixed results, studies which measured the tobacco specific
nitrosamine metabolites NNAL and NNAL-Gluc in the urine
of people exposed to SHS have shown consistently elevated
levels of these biomarkers. The assay for urinary NNAL and
NNAL-Gluc is highly specific to carcinogen exposure from
SHS because NNK, the parent compound of these metabo-
lites, is found only in tobacco products. The contribution of
non-tobacco sources to all other biomarkers discussed here
confounds their validity in SHS studies, where carcinogen
exposure is generally relatively low.

Studies of NNAL and NNAL-Gluc levels in non-smokers
exposed to SHS have provided some potentially significant
insights on the role of SHS as a lung carcinogen. Prominent
among these are the results of studies of non-smoking
women who lived with men who smoked.6 The risk for lung
cancer in these women is about 20% greater than in non-
exposed non-smoking women. The risk for lung cancer in
smokers is 15–20 times (1500–2000%) greater than in non-
smokers.83 Therefore, the risk for lung cancer in these non-
smoking women exposed to SHS is about 1–2% as great as
that of smokers.6 83 The level of NNAL plus NNAL-Gluc in the
urine of the SHS exposed women was about 5.6% as great as
that of their smoking partners, consistent with their
comparative 1–2% risk for lung cancer compared to smo-
kers.55 Other studies show a mean of about 0.05 pmol/ml
NNAL plus NNAL-Gluc in non-smokers exposed to SHS. This
is about 1.6% of the typical levels found in smokers, which is
also consistent with the results just discussed. These

What this paper adds

Epidemiologic data support the conclusion that exposure to
secondhand tobacco smoke causes lung cancer in non-
smokers. Measurement of carcinogen derived biomarkers
can further strengthen this conclusion and can provide
insights pertinent to mechanisms of cancer induction and
modes of cancer prevention.

A review of the use of carcinogen derived biomarkers to
assess uptake and metabolism of tobacco smoke carcinogens
in people exposed to secondhand tobacco smoke is
presented.
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carcinogen uptake data provide biochemical support for the
role of SHS as a lung carcinogen in non-smokers. The results
are particularly relevant because of the established carcino-
genicity of NNK to the lungs of rodents, where adenocarci-
noma are commonly observed in treated animals, consistent
with observations in SHS exposed women.
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